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We present numerical studies of anomalous diffusion in periodic potentials by simulating a generalized
Langevin equation. It is proved that the particle driven by a thermal colored noise with the spectral density
vanishing at zero frequency allows superdiffusive motion. It is found that the system subjected to sub- or
superohmic damping exhibits two motion modes in a corrugated plane: running oscillated state and mixed
running and oscillating states, respectively. Induced, the anomalous power can be enhanced up twice for the
latter case and thus a wide range of diffusive regimes is observed with changing titled force.
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Diffusion processes of atoms, molecules, and clusters of
molecules in periodic structures have been subjects of re-
search for many decades due to their intrinsic interest and
technological importance �1,2�. As a consequence, the
temperature-dependent effective diffusive coefficient calcu-
lated by the mean square displacement �MSD� divided by
time is exponentially smaller than that of free diffusion. Two
simple approaches for giant enhancing diffusion were pro-
posed, such as the periodic potential is either titled �3� or
rocked �4�. The mechanism is that the optimal matching of
the external driving force and internal noise drives the prob-
ability peaks up to the potential hills, which are scattered at
the potential tops and smashed into small pieces. Chaos in-
duced by a deterministically rocked asymmetrical periodic
potential including of finite inertia can mimic the role of
noise �5�. All those studies open interesting perspectives,
e.g., to manipulate reaction-diffusion systems. Most of the
models, so far, deal with regular Brownian motion cases.

The diffusion and mobility of a particle in a titled periodic
potential, i.e., a corrugated plane, provides a simple example
of a phase transition between a located state and a running
state �1,6�. Very recently, the fractional �sub-� diffusion in
titled periodic potential was studied by numerically solving a
fractional Fokker-Planck equation �7�. The diffusive and
transport behaviors of a superdiffusing system are far more
complex and should exhibit richer dynamical phenomena.
The nature of anomalous diffusion in periodic potentials, is
still not completely understood. In the present state, analyti-
cal result for the underdamped case is not available, so more
extensive numerical calculations with various parameters are
necessary.

In this paper, we focus on the variation of diffusive be-
havior of a particle in periodic potentials. Here we show that
the problem of a particle driven by a thermal colored noise
with the spectral density vanishing at zero frequency in the
periodic potential also belongs to the class of superdiffusive
motions. A generic case for a particle subjected to a nono-
hmic friction environment is addressed; the mixing oscillated
state and running state in the corrugated plane is found to
bring results.

The motion of a particle with mass m is described by a
generalized Langevin equation �GLE�

mv̇�t� = − m�
0

t

��t − t��v�t��dt� − U��x� + ��t� , �1�

where ��t� is the memory friction kernel and ��t� is of van-
ishing mean and its stationary correlation satisfies the
fluctuation-dissipation theorem: ���t���t���=mkBT��t− t��.
Here, kB is the Boltzmann constant and T is the temperature
of the heat bath.

We consider a simple colored noise with the spectral den-
sity vanishing at zero frequency, which is called the har-
monic velocity noise �HVN� ��t� �8� obeying the Langevin
equations: �̇=�, �̇=−��−�2�+��t�, where ��t� is Gaussian
white noise of vanishing mean with ���t���t���
=2��2kBT	�t− t��, � is the damping coefficient, � and �
denote the damping and frequency parameters of noise, re-
spectively. The spectral density of ��t� is given by

S��
� =
2��2kBT
2

�
2 − �2�2 + �2
2 . �2�

Such thermal noise leads to a vanishing effective friction,
i.e., the Laplace transform of the damping kernel vanishes at
zero frequency ��̂�0�=�0

���t�dt=0�. The particle allows as-
ymptotical ballistic diffusive behavior in the absence of po-
tential �9�. Similar thermal fluctuations are relevant to many
physical systems, for instance, the coupling of a particle to
low frequency modes of a heat bath is weak, as optical-like
phonons �9,10�. Other situations that come to mind involve
the vortex diffusion in magnetic fields �11�, or diverse other
open dynamics with an inherent velocity-dependent system-
bath coupling �12�. Note also a typical solid-state Drude bath
spectrum, thus yielding as well a vanishing, zero-frequency
friction �10,13�.

In Fig. 1, we plot typical trajectories of a regular Brown-
ian particle �left panel� and that subjected to a thermal HVN
��t� �right panel� in the two-dimensional separable periodic
potential: �U�x ,y�=−U0�cos x+cos y��. The initial position is
x�0�=y�0�=0 and the initial velocity obeys a Gaussian ve-
locity distribution of zero mean with variance kBT /m. Of
interest to us is the possibility that jumps of the particle
driven by HVN belong to superdiffusive motion. This is
clearly observed for intermediate heights of the potential bar-
rier �or equivalent to intermediate temperatures�. These inho-*Electronic address: jdbao@bnu.edu.cn
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mogeneous jumps exist in this case, because the particle
should jump a long distance with several periods when a
particle of this kind with a strong velocity memory rather
than its position surmounts up the potential top. This is in
agreement with the distinct feature of the superdiffusion be-
ing the hierarchical clustering of the trajectory �14�. This
phenomenon was also proved in the random correlated po-
tential at intermediate times �15�, but subdiffusion at long
times �16�. The present result also differs with Lévy statistics
in a Hamiltonian system �17�. We assert that a special as-
sumption for the distribution of noise is not necessary in
order to realize superdiffusion.

Time evolution of MSD of the HVN-driven particle mov-
ing in the one-dimensional periodic potential �U�x�=
−U0cos x� is shown in Figs. 2�a� and 2�b� at fixed tempera-
ture kBT=1.0 for various U0. The comparison with the white
noise case is performed in Fig. 2�c�. The power �, calculated
over the time variation of MSD in Figs. 2�a� and 2�b�, is
plotted in Fig. 2�d�, as a function of U0. Upon inspection, we
find a prominent result: There is a gradual change in the
power � starting from two which tends to �=1 only for very
large values of barrier height. This behavior depends explic-

itly on the parameters of the present colored noise. With a
large U0, the particle undergoes a noise activated escape
event and performs a hopping process from one well to the
neighboring ones, and thus shows normal diffusion at long
times.

Next, let us consider a generic model leading to a rich
variety of different diffusion regimes, namely, a particle sub-
jected to a nonohmic damping environment �18�. The time-
dependent damping kernel is deduced from the spectral den-
sity of environmental oscillators, i.e.,

��t� =
2

m
�

0

�

d

J�
�



cos�
t� �3�

with J�
�=�	�
 / 
̃�	−1fc, where fc is a high frequency cutoff
function, 
̃ denotes a reference frequency allowing for the
friction constant m�	 to have the dimension of a viscosity of
any 	. A smooth cutoff function is chosen to be fc
=exp�−
 /
c�, m=1.0, �	=4.0, 
c=4.0, and 
̃=1.0 are used
in the forthcoming calculations.

The case of particle modeled by the GLE �1� subject to
both a nonohmic memory damping �3� and a potential is a
much more difficult problem, because the GLE cannot be
transferred into a set of Markovian LEs and the correspond-
ing colored noise cannot be simulated directly yet. Here we
develop a numerical technique for solving GLE with the
nonohmic memory friction, which is realized by using the
Fourier transform technique to generate noise �19� and the
stochastic Runge-Kutta method �20� to solve the whole equa-

FIG. 1. Comparison of the trajectories in two-dimensional peri-
odic potential. Left: White noise induced. Right: Harmonic velocity
noise induced. The parameters used are m=1.0, kBT=1.0, �=1.0,
�=1.0, and �=1.0.

FIG. 2. �Color online� The mean square displacement of the
particle subjected to a thermal HVN vs time for versus potential
barriers in �a� and �b�; the white noise case for U0

=0.1,0.3,0.5,0.7,1.0,3.0 from top to bottom is compared in �c�.
The power � appearing in �x2�t��=2D	t� of �a� and �b� as a function
of U0 is plotted in �d�. The parameters used are the same in Fig. 1.
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tion. This approach is very successful as shown in Ref. �21�,
which has been compared with several solvable examples.

In Fig. 3, we plot the MSD of a subohmic damping par-
ticle with 	=0.6 as a function of time in the titled periodic
potential �U�x�=−U0cos x−Fx with U0=1.0� at fixed F and
for various temperatures; the MD is also plotted in the inset
of this figure. It is seen that the MSD and MD of the particle
show quasiperiodic synchronization, namely, the MSD al-
lows maximal or minimal when the particle arrives at the
maximal or minimal position of the original potential, re-
spectively. This state is called the running oscillated state
and will disappear with the increase of temperature.

Figure 4 shows time-dependent MSD of a superohmic
damping particle with 	=1.7. The most interesting finding is:
The power � appearing in the fitted MSD function
���x2�t��	 t�� is a nonmonotonous function of the tilted
force and �=	 when F�1 �local potential minima disap-
pear�. Near Fc=0.75, the value of � yields maximum and is
about 3.34. In particular, this behavior of diffusion is induced
by the mixing of two separated velocity modes: oscillating
state and running state. The dimensionless backward and for-
ward barriers are U1=2
1−F2+2F arcsin F+F and U2
=2
1−F2+2F arcsin F−F at x0=arcsin�F�. At low-
temperature kBT=0.1, kBT�U2�U1, the particle oscillates
around a potential minimum with a large probability. Never-

theless, once the particle climbs over its forward barrier it
will transfer into the running state.

In Figs. 5�a� and 5�b�, we plot the probability distributions
of velocity and position of the particle with 	=1.7, respec-
tively. It is seen that the velocity distribution in the oscillat-
ing state approximately obeys the Maxwellian one for small
F. As long as the particle escapes from a potential well it is
easy to pass over the array of potential barriers. The relative
velocity between the running state and the oscillating state
increases inhomogeneities with time, thus the distribution of
the particle position has a long tail shown in Fig. 5�b�.

Note that the velocity distribution presents a two-bell
shape, corresponding to the small oscillation and moving
particles: this is a coexistence regime of the running and
oscillating states. At time t, we assume that the oscillating
mode including of N1�t� text particles with �xb�t���0; the
running mode having N2�t� test particles and reads �xd�t��
�at�̃, where a is a constant and �̃=1.627 found in our simu-
lation. We have �x�t����xd�t��N2�t� /N� t�̃ and

��x2�t�� = N−1� 
j=1

N1�t�

�xb,j�t� − �x�t���2

+ 
j=1

N2�t�

�xd,j�t� − �x�t���2� � t2�̃, �4�

where N1�t�+N2�t�=N. Then the power is yielded as 2�̃
=3.25 which is consistent with the previous fitting result of
3.34. The variation of � with F is actually due to the con-
figuration of velocity distribution being either split or united.

FIG. 3. �Color online�. Time-dependent mean square displace-
ment of a subohmic damping particle �	=0.6� at fixed F=5.0 and
kBT=1.0, 0.5, 0.1 from top to bottom. The mean displacement of
kBT=0.1 case is also plotted in the inset.

FIG. 4. �Color online� Time-dependent mean square displace-
ment of a superohmic damping particle �	=1.7� at fixed kBT=0.1
and F=0.8, 0.7, 0.9, 0.6, 0.5 �open squares� from top to bottom.
Here open circles are F=0.75 and the solid line is their fitting curve.
The power � fitted as a function of F is also plotted in the inset.

FIG. 5. �Color online� �a� The distributions of velocity at t
=200 for various titled forces; notice that the velocity presents a
coexistence of two bells shaped when F=0.75. �b� The position
distribution at t=50 for F=0.75. Here 	=1.7 and kBT=0.1.
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In conclusion, we have explored the diffusive behavior of
a particle in periodic potentials described by a generalized
Langevin equation. There exhibits a wide range of diffusive
regimes. This behavior, is much richer than that of the regu-
lar Brownian motion. When the temperature is sufficiently
large, the particle driven by a thermal colored noise with the
spectral density vanishing at zero-frequency exhibits a super-
diffusive motion. A sub- or superohmic damping particle
moving in a titled periodic potential allows either a running
oscillated state or a mixing of the two states. Indeed, the
power of superdiffusing system characterized by the mean
square displacement as a function of time is enhanced twice

near a critical titled force, because the velocity distribution
presents a coexistence of two-bell shaped, corresponding to
oscillating and moving particles, and the position distribution
has a long tail. This implies that a wide anomalous diffusion
with the power from zero to four can be realized in a titled
periodic potential. The present result, a periodic structure not
only enhances the diffusion constant but also changes the
diffusive behavior of a system, and will open future studies.
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